Class : 7th Subject: Mathematics Topic Integers

Essential points

All natural numbers are integers

All whole numbers are integers

Zero is neither positive nor negative

Zero is the additive identity

-a is the additive inverse of a and vice – versa

	Closure Law	Commutative law	Associative law
Addition	a + b is an	a+b=b+a	a + (b + c)
	integer		= (a+b)+c
Subtraction	a-b is an	$a-b\neq b-a$	a-(b-c)
	integer		$\neq (a-b)-c$
Multiplication	$m{a} imes m{b}$ is an	$a \times b = b \times a$	$a \times (b \times c)$
	ingeger		$= (\boldsymbol{a} \times \boldsymbol{b}) \times \boldsymbol{c}$
Division	$a \div b$ is an	$a \div b \neq b \div a$	$a \div (b \div c)$
	integer		$\neq (a \div b) \div c$

Qno1: If a = 10, b = 6, then show that $a - b \neq b - a$

Soln: Here a = 10 and b = 6

 $\Rightarrow a - b = 10 - 6 = 4$

and b - a = 6 - 10 = -4

Therefore $a - b \neq b - a$

Qno2: If a = 7, b = 4, c = 3 then show that

(i) a + (b + c) = (a + b) + c(ii) $b \times (a + c) = b \times a + b \times c$ (iii) $(b \times c \times a) = a \times b \times c$ (iv) $b \times c = c \times a$ Sol (i) Here a = 7, b = 4, c = 3

Then a + (b + c) = 7 + (4 + 3) = 7 + 7 = 14And (a + b) + c = (7 + 4) + 3 = 11 + 3 = 14Sol(ii) Here $b \times (a + c) = 4 \times (7 + 3) = 4 \times 10 = 40$ And $b \times a + b \times c = 4 \times 7 + 4 \times 3 = 28 + 12 = 40$

Similarly we can prove (iii) and (iv)

Qno3 The product of two integer is 195, if one of the integer is 13, find the other integer

Soln : Product of two integer = 195

One integer = 13

Therefore other integer = $195 \div 13 = 15$

Qno4:Use the sign of <, > or = in the box to make the statement true

(a) $(-8) + (-4) \| < \| (-8) - (-4)$ (b) $(-3) + 7 - (19) \| \| 15 - 8 + (-9)$ (c) $23 - 41 + 11 \| \| 23 - 44 + 14$ Soln: (a) (-8) + (-4) = -8 - 4 = -12And (-8) - 4 = -8 + 4 = -4

```
Therefore -4 > -12 \text{ or } -12 < -4
```

Similarly we can prove (b) and (c)

Home Assignment

Topic : Integer

Class: 7th

Qno1: If a = 6, b = -4 then show that $a - b \neq b - a$

Qno2: If a = 3, b = -2, and c = -1 verify that

- (a) $b \times (a + c) = b \times a + b \times c$ (b) $(b \times c \times a) = a \times b \times c$ (c) $b \times c = c \times a$
- **Qno3**: The product of two integer is -182. If one of the integer is 13,

then find the other integer

Qno4: Represent the following numbers on a number line

(a) -7×2 (b) 3×5

Qno5: Verify commutative law under addition and multiplication if

(*i*)
$$a = -4$$
, $b = -3$ (*ii*) $a = -5$, $b = 6$

Qno7: Verify associative law and distributive law if

(a) a = 2, b - -3, c = -4

Multiple choice questions

Qno8: Which of the following is a correct statement?

(a) - 5 > -4, (b) - 5 < -4 $(c) -5 \le -4$ (d) -5 = -4

Qno9: 6 - (-8) =

(a) 2 (b) -2 (c) 14 (d) None of these

Qno10: The additive inverse of 12 is

(a) 6 (b) 0 (c) -12 (d) -7

Qno11: On subtracting -13 from - 8, we get

(a) -21 (b) 21 (c) 5 (d) -5

Qno12 : The letter *N* represents which number ?

Qno13: Which one is correct

- (a) All natural numbers are whole numbers , all whole numbers are integers
- (b) All whole numbers are integers, all integers are natural numbers
- (c) All integers are whole numbers , all natural numbers are integers.

Qno14: Fill in the blanks

(a) -6 × (....) = 6
(b) (.....) ÷ 25 = 0
(c) (....) ÷ 36 = -2
(d) 0 is greater than everyinteger and less than every integer

Class: 7th

Subject: Mathematics

Topic: Fractions and Decimals

Essential Points

Fraction is a part of a whole

The number of the form $\frac{a}{b}$ where a and b are whole numbers and $b \neq o$ are called fractions.

Here a is called numerator and b is called denominator of fraction.

A fraction whose numerator is less than the denominator is called proper fraction.

A fraction whose numerator is more than the denominator is called improper fraction.

A combination of whole number and proper fraction is called a mixed fraction.

Like fraction have same denominator.

If $\frac{a}{b}$ and $\frac{c}{d}$ are two fractions, then $\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$

If $\frac{a}{b}$ and $\frac{c}{d}$ are two fractions, then $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$

Decimals

A part of a whole can expressed in decimal or decimals are another way of representing fractions. A decimal or a decimals number contains a whole number part and a decimal number separated by a dot (.)

For example: In 356.47, 356 is the whole part and 47 is the decimal part.

See the following place value chart for

4563.427, 879.34, 6284.932

Thousa nd 1000	Hundr ed 100	Tens 10	Ones 1	Decim al Point	Tenths 1/10	Hundred th 1/100	Thousa ndths 1/1000
4	5	6	3		4	2	7
	8	7	9	•	3	4	
6	2	8	4		9	3	2

Qno1: Convert the following into an improper fraction

(a) $9\frac{1}{5}$ (b) $3\frac{2}{7}$ (c) $1\frac{5}{9}$ Sol: (a) $9\frac{1}{5} = 9 + \frac{1}{5} = \frac{9 \times 5 + 1}{5} = \frac{46}{5}$

Similarly we can prove (b) and (c)

Qno2: Convert the following into a mixed fraction

(a) $\frac{7}{3}$ (b) $\frac{41}{5}$ (c) $\frac{40}{21}$

Sol: $\frac{7}{3}$: on dividing 7 by 3, we get

$$Quotient = 2, Remainder = 1 and Divisor = 3$$

Therefore $Rule = Quotient \frac{Remainder}{Divisor}$

 $\frac{7}{3} = 2\frac{1}{3}$

Similarly we can prove , (b) and (c)

Qno3: Write three equivalent fractions for each of the following

(a) $\frac{1}{6}$ (b) $\frac{2}{5}$ (c) $\frac{9}{11}$ Soln: (a) $\frac{1}{6} = \frac{1 \times 2}{6 \times 2} = \frac{2}{12}$ $\frac{1}{6} = \frac{1 \times 3}{6 \times 3} = \frac{3}{18}$ $\frac{1}{6} = \frac{1 \times 5}{6 \times 5} = \frac{5}{30}$

So , $\frac{2}{12}$, $\frac{3}{18}$ $\frac{5}{30}$ are equivalent to $\frac{1}{6}$

Similarly we can prove (b) and (c)

Qno4: A rectangular sheet of paper is $12\frac{1}{2}$ cm long and $10\frac{2}{3}$ cm wide.

Find its Perimeter

Soln: Length = $l = 12\frac{1}{2} = \frac{25}{2}cm$ Perimeter = $2(l + b) = 2\left(\frac{32}{3} + \frac{25}{2}\right)$

$$= 2\left(\frac{32 \times 2 + 25 \times 3}{6}\right) = 2\left(\frac{64 + 75}{6}\right) = 2\left(\frac{139}{6}\right) = \frac{139}{3}cm$$
$$= 46\frac{1}{2}cm$$

Qno5: Write the fraction representing the shaded portion

(i) (ii) (ii) $(iii) \frac{2}{9}$ (*ii*) $\frac{1}{4}$ Soln: (i) $\frac{2}{4}$ Qno6: Write the following decimal numbers as number names *(i)* 34.56 (*ii*) 4.778 (iii) 872.14 Soln: (i) 34.56 – Thirty four point five six 4.778 – Four point seven seven eight *(ii)* (iii) Try yourself **Qno7**: Find the place value of 6, 9, and 4 in 358.694 Soln: Place value of 6 is $\frac{1}{10}$ Place value of 9 is $\frac{1}{100}$ Place value of 4 is $\frac{1}{1000}$

Qno8: Add 291.45 and 62.291

Soln: First we convert 291.45 and 62.291 as like decimals and then place them and shown as below

Qno9: Multiply

(a) 2.3×4.2 (b) 3×4.52 (c) 1.01×2.44

Soln (a) Multiple the number removing decimals

 $23 \times 42 = 966$

Similarly we can solve (b) and (c)

Qno10: Divide

(a) 285.6 by 10 (b) 2857.9 by 100 (c) 3125.62 by 1000

Soln (a) $285.6 \div 10 = 28.56$

Decimal is shifted to one place to the left

(b) and (c) Try yourself

Qno11: If 25 bags of wheat weight 412.5 kg. Find the weight of one Kg

Soln: Weight of 25 bags of wheat = 412.5 kgWeight of 1 kg of wheat = $\frac{412.5}{25} = 16.5 kg$ Therefore weight of 1 bag of wheat is 16.5 kg

Home Assignment

Qno1: Convert the following into an improper fraction

(a) $8\frac{1}{5}$ (b) $4\frac{2}{7}$ (c) $6\frac{5}{9}$

Qno2: Convert the following into a mixed fraction

(a) $\frac{17}{3}$ (b) $\frac{41}{5}$ (c) $\frac{100}{21}$

Qno3: Write three equivalent fractions for each of the following

(a) $\frac{1}{5}$ (b) $\frac{2}{6}$ (c) $\frac{9}{14}$

Qno4: A rectangular sheet of paper is $12\frac{1}{2}$ cm long and $10\frac{2}{3}$ cm wide.

(a) Find its Perimeter (b) Find its Area

Qno5: Write the following decimal numbers as number names

(*i*) 33.56 (*ii*) 8.778 (*iii*) 876.14

Qno6: Find the place value of 1, 2, and 3 in 358.134

Qno7: Add 295441.45 and 6264.291

Qno8: Multiply

(a) 2.4×4.2 (b) 5×4.52 (c) 15.01×2 .

Qno9: Divide

(a) 255.6 by 10 (b) 2757.9 by 100 (c) 3145.62 by 1000

Qno10: If 20 bags of wheat weight 482.5 kg. Find the weight of one Kg

Multiple Choice Question

(1) The expression $\frac{1}{15} \div \left(\frac{4}{15} + \frac{1}{3}\right)$ is equivalent to (a) $\frac{1}{9}$ (b) 9 (c) $\frac{1}{5}$ (d) 5 (2) $8\frac{1}{3}\%$ express as fraction is (a) $\frac{25}{3}$ (b) $\frac{3}{25}$ (c) $\frac{1}{12}$ (d) $\frac{1}{4}$ (3) If x% of 24 = 64, then the value of x is (a) $37\frac{1}{2}$ (b) $133\frac{1}{3}$ (c) $266\frac{2}{3}$ (d) $66\frac{2}{3}$ (4) The value of $(0.05)^3$ is (a) 0.000125 (b) 0.00125 (c) 0.0125 (d) 0.125(5) 1.04? (a) $1\frac{1}{5}$ (b) $1\frac{2}{3}$ (c) $1\frac{1}{25}$ (d) None of these (6) $0.23 \times 0.3 = ?$ (a) 0.69 (b) 6.9 (c) 0.069 (d) None of these

Fill in the blanks

(a) A fraction is a number representing a part of a

(b) Five equivalent fractions of $\frac{3}{5}$ are

(c)
$$\frac{7}{8} \div 4\frac{1}{2}$$
 is

(d) The value of 100.01 × 1.1 is

(e) Dividing 217.44 *by* 18 we get