Class : $7^{\text {th }} \quad$ Subject: Mathematics Topic Integers

Essential points

All natural numbers are integers

All whole numbers are integers

Zero is neither positive nor negative

Zero is the additive identity

- a is the additive inverse of a and vice - versa

	Closure Law	Commutative law	Associative law
Addition	$a+b$ is an integer	$a+b=b+a$	$\begin{aligned} & \boldsymbol{a}+(\boldsymbol{b}+\boldsymbol{c}) \\ & =(\boldsymbol{a}+\boldsymbol{b})+\boldsymbol{c} \end{aligned}$
Subtraction	$a-b$ is an integer	$a-b \neq b-a$	$\begin{aligned} & a-(b-c) \\ & \neq(a-b)-c \end{aligned}$
Multiplication	$a \times b$ is an ingeger	$a \times b=b \times a$	$\begin{aligned} & a \times(b \times c) \\ & =(a \times b) \times c \end{aligned}$
Division	$a \div b$ is an integer	$a \div b \neq b \div a$	$\begin{aligned} & a \div(b \div c) \\ & \neq(a \div b) \div c \end{aligned}$

Qno1: If $a=10, b=6$, then show that $a-b \neq b-a$
Soln: Here $a=10$ and $b=6$
$\Rightarrow a-b=10-6=4$
and $b-a=6-10=-4$
Therefore $a-b \neq b-a$
Qno2: If $a=7, b=4, c=3$ then show that
(i) $a+(b+c)=(a+b)+c$
(ii) $b \times(a+c)=b \times a+b \times c$
(iii) $(b \times c \times a)=a \times b \times c$
(iv) $b \times c=c \times a$

Sol (i) Here $a=7, b=4, c=3$
Then $a+(b+c)=7+(4+3)=7+7=14$
And $(a+b)+c=(7+4)+3=11+3=14$
Sol(ii) Here $b \times(a+c)=4 \times(7+3)=4 \times 10=40$
And $b \times a+b \times c=4 \times 7+4 \times 3=28+12=40$
Similarly we can prove (iii) and (iv)
Qno3 The product of two integer is 195, if one of the integer is 13 , find the other integer

Soln : Product of two integer $=195$

$$
\text { One integer }=13
$$

Therefore other integer $=195 \div 13=15$
Qno4:Use the sign of $<,>$ or $=$ in the box to make the statement true
(a) $(-8)+(-4) \quad\|<\| \quad(-8)-(-4)$
(b) $(-3)+7-(19)$ || || $15-8+(-9)$
(c) $23-41+11$ || || $23-44+14$

Soln: $(\mathrm{a})(-8)+(-4)=-8-4=-12$
And $(-8)-4=-8+4=-4$

Therefore $-4>-12$ or $-12<-4$
Similarly we can prove (b) and (c)

Home Assignment

Topic: Integer

Class: $7^{\text {th }}$
Qno1: If $a=6, b=-4$ then show that $a-b \neq b-a$
Qno2: If $a=3, b=-2$, and $c=-1$ verify that
(a) $b \times(a+c)=b \times a+b \times c$
(b) $(b \times c \times a)=a \times b \times c$
(c) $b \times c=c \times a$

Qno3: The product of two integer is $\mathbf{- 1 8 2}$. If one of the integer is 13 , then find the other integer

Qno4: Represent the following numbers on a number line
(a) -7×2
(b) 3×5

Qno5: Verify commutative law under addition and multiplication if
(i) $a=-4, b=-3$
(ii) $a=-5, b=6$

Qno7: Verify associative law and distributive law if
(a) $a=2, b--3, c=-4$

Multiple choice questions

Qno8: Which of the following is a correct statement?
(a) $-5>-4$,
(b) $-5<-4$
(c) $-5 \leq-4$
(d) $-5=-4$

Qno9: $6-(-8)=$
(a) 2
(b) -2
(c) 14
(d) None of these

Qno10: The additive inverse of 12 is
(a) 6
(b) 0
(c) -12
(d) -7

Qno11: On subtracting - 13 from -8 , we get
(a) -21
(b) 21
(c) 5
(d) -5

Qno12 : The letter N represents which number?

(a) 58
(b) 59
(c) 61
(d) 62

Qno13: Which one is correct
(a) All natural numbers are whole numbers, all whole numbers are integers
(b) All whole numbers are integers, all integers are natural numbers
(c) All integers are whole numbers, all natural numbers are integers.

Qno14: Fill in the blanks

(a) $-6 \times(\ldots .)=$.
(b) $(\ldots \ldots) \div 25=0$
(c) $(\ldots \ldots) \div 36=-2$
(d) 0 is greater than everyinteger and less than every integer

Class: $7^{\text {th }}$

Subject: Mathematics

Topic: Fractions and Decimals

Essential Points

Fraction is a part of a whole

The number of the form $\frac{a}{b}$ where a and b are whole numbers and $\boldsymbol{b} \neq \boldsymbol{o}$ are called fractions.

Here \boldsymbol{a} is called numerator and \boldsymbol{b} is called denominator of fraction.

A fraction whose numerator is less than the denominator is called proper fraction.

A fraction whose numerator is more than the denominator is called improper fraction.

A combination of whole number and proper fraction is called a mixed fraction.

Like fraction have same denominator.
If $\frac{a}{b}$ and $\frac{c}{d}$ are two fractions, then $\frac{a}{b} \times \frac{c}{d}=\frac{a c}{b d}$
If $\frac{a}{b}$ and $\frac{c}{d}$ are two fractions, then $\frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \times \frac{d}{c}=\frac{a d}{b c}$

Decimals

A part of a whole can expressed in decimal or decimals are another way of representing fractions.

A decimal or a decimals number contains a whole number part and a decimal number separated by a dot (.)

For example: In $356.47,356$ is the whole part and 47 is the decimal part.

See the following place value chart for
4563.427, $\quad 879.34, \quad 6284.932$

Thousa nd 1000	Hundr ed 100	Tens 10	Ones 1	Decim al Point	Tenths $1 / 10$	Hundred th $1 / 100$	Thousa ndths $1 / 1000$
4	5	6	3	.	4	2	7
	8	7	9	.	3	4	
6	2	8	4	.	9	3	2

Qno1: Convert the following into an improper fraction
(a) $9 \frac{1}{5}$
(b) $3 \frac{2}{7}$
(c) $1 \frac{5}{9}$

Sol: (a) $9 \frac{1}{5}=9+\frac{1}{5}=\frac{9 \times 5+1}{5}=\frac{46}{5}$
Similarly we can prove (b) and (c)
Qno2: Convert the following into a mixed fraction
(a) $\frac{7}{3}$
(b) $\frac{41}{5}$
(c) $\frac{40}{21}$

Sol: $\frac{7}{3}$: on dividing 7 by 3 , we get

Quotient $=2$, Remainder $=1$ and Divisor $=3$
Therefore Rule $=$ Quotient $\frac{\text { Remainder }}{\text { Divisor }}$
$\frac{7}{3}=2 \frac{1}{3}$
Similarly we can prove, (b) and (c)
Qno3: Write three equivalent fractions for each of the following
(a) $\frac{1}{6}$
(b) $\frac{2}{5}$
(c) $\frac{9}{11}$

Soln: (a) $\frac{1}{6}=\frac{1 \times 2}{6 \times 2}=\frac{2}{12}$

$$
\begin{aligned}
& \frac{1}{6}=\frac{1 \times 3}{6 \times 3}=\frac{3}{18} \\
& \frac{1}{6}=\frac{1 \times 5}{6 \times 5}=\frac{5}{30}
\end{aligned}
$$

So, $\frac{2}{12}, \frac{3}{18} \frac{5}{30}$ are equivalent to $\frac{1}{6}$
Similarly we can prove (b) and (c)
Qno4: A rectangular sheet of paper is $12 \frac{1}{2} \mathrm{~cm}$ long and $10 \frac{2}{3}$ cm wide.
Find its Perimeter

Breadth $=b=10 \frac{2}{3}=\frac{32}{3} \mathrm{~cm}$

$$
\text { Length }=l=12 \frac{1}{2}=\frac{25}{2} \mathrm{~cm}
$$

Perimeter $=2(l+b)=2\left(\frac{32}{3}+\frac{25}{2}\right)$

$$
\begin{gathered}
=2\left(\frac{32 \times 2+25 \times 3}{6}\right)=2\left(\frac{64+75}{6}\right)=2\left(\frac{139}{6}\right)=\frac{139}{3} \mathrm{~cm} \\
=46 \frac{1}{3} \mathrm{~cm}
\end{gathered}
$$

Qno5: Write the fraction representing the shaded portion
(i)

4

(ii)

$\frac{1}{3}$

(ii)

Soln: (i) $\frac{2}{4}$
(ii) $\frac{1}{4}$
(iii) $\frac{2}{9}$

Qno6: Write the following decimal numbers as number names
(i)
34.56
(ii) 4.778
(iii) 872.14

Soln: (i) 34.56 - Thirty four point five six
(ii) 4.778 - Four point seven seven eight
(iii) Try yourself

Qno7: Find the place value of 6,9 , and 4 in 358.694
Soln: Place value of 6 is $\frac{1}{10}$
Place value of 9 is $\frac{1}{100}$
Place value of 4 is $\frac{1}{1000}$
Qno8: Add 291.45 and 62.291

Soln: First we convert 291.45 and 62.291 as like decimals and then place them and shown as below

$$
\begin{array}{r}
291.450 \\
+62.291 \\
\hline \mathbf{3 5 3 . 7 4 1} \\
\hline
\end{array}
$$

Qno9: Multiply
(a) 2.3×4.2
(b) 3×4.52
(c) 1.01×2.44

Soln (a) Multiple the number removing decimals

$$
23 \times 42=966
$$

Similarly we can solve (b) and (c)
Qno10: Divide
(a) 285.6 by 10
(b) 2857.9 by 100
(c) 3125.62 by 1000

Soln (a) $285.6 \div 10=28.56$
Decimal is shifted to one place to the left
(b) and (c) Try yourself

Qno11: If 25 bags of wheat weight 412.5 kg . Find the weight of one Kg
Soln: Weight of 25 bags of wheat $=412.5 \mathrm{~kg}$
Weight of 1 kg of wheat $=\frac{412.5}{25}=16.5 \mathrm{~kg}$
Therefore weight of 1 bag of wheat is 16.5 kg

Home Assignment

Qno1: Convert the following into an improper fraction
(a) $8 \frac{1}{5}$
(b) $4 \frac{2}{7}$
(c) $6 \frac{5}{9}$

Qno2: Convert the following into a mixed fraction
(a) $\frac{17}{3}$
(b) $\frac{41}{5}$
(c) $\frac{100}{21}$

Qno3: Write three equivalent fractions for each of the following
(a) $\frac{1}{5}$
(b) $\frac{2}{6}$
(c) $\frac{9}{14}$

Qno4: A rectangular sheet of paper is $12 \frac{1}{2} \mathrm{~cm}$ long and $10 \frac{2}{3} \mathrm{~cm}$ wide.
(a) Find its Perimeter
(b) Find its Area

Qno5: Write the following decimal numbers as number names
(i) 33.56
(ii) 8.778
(iii) 876.14

Qno6: Find the place value of 1, 2, and 3 in 358.134
Qno7: Add 295441.45 and 6264.291
Qno8: Multiply
(a) 2.4×4.2
(b) 5×4.52
(c) 15.01×2.

Qno9: Divide
(a) 255.6 by 10
(b) 2757.9 by 100
(c) 3145.62 by 1000

Qno10: If 20 bags of wheat weight 482.5 kg . Find the weight of one Kg

Multiple Choice Question

(1) The expression $\frac{1}{15} \div\left(\frac{4}{15}+\frac{1}{3}\right)$ is equivalent to
(a) $\frac{1}{9}$
(b) 9
(c) $\frac{1}{5}$
(d) 5
(2) $8 \frac{1}{3} \%$ express as fraction is
(a) $\frac{25}{3}$
(b) $\frac{3}{25}$
(c) $\frac{1}{12}$
(d) $\frac{1}{4}$
(3) If $x \%$ of $24=64$, then the value of x is
(a) $37 \frac{1}{2}$
(b) $133 \frac{1}{3}$
(c) $266 \frac{2}{3}$
(d) $66 \frac{2}{3}$
(4) The value of $(0.05)^{3}$ is
(a) 0.000125
(b) 0.00125
(c) 0.0125
(d) 0.125
(5) 1.04 ?
(a) $1 \frac{1}{5}$
(b) $1 \frac{2}{3}$
(c) $1 \frac{1}{25}$
(d) None of these
(6) $0.23 \times 0.3=$?
(a) 0.69
(b) 6.9
(c) 0.069
(d) None of these

Fill in the blanks

(a) A fraction is a number representing a part of a \qquad
(b) Five equivalent fractions of $\frac{3}{5}$ are
(c) $\frac{7}{8} \div 4 \frac{1}{2}$ is \qquad
(d) The value of 100.01×1.1 is \qquad
(e) Dividing 217.44 by 18 we get \qquad

